

Jie Feng

@ jif005@ucsd.edu | Google Scholar | Portfolio | La Jolla, USA

EDUCATION

University of California, San Diego	La Jolla, USA
<i>Ph.D. Candidate in Electrical and Computer Engineering; GPA: 3.90/4.00</i>	<i>09/20/2021 – present</i>
Advisor: Prof. Yuanyuan Shi	
Research Interest: Deep Learning, Reinforcement Learning, Optimization, Power Systems, Foundation Models.	
Massachusetts Institute of Technology	Cambridge, USA
<i>Visiting Student</i>	<i>06/14/2025 – 09/01/2025</i>
Zhejiang University	Hangzhou, China
<i>Bachelor of Engineering, Automation (Robotics); GPA: 3.96/4.00</i>	<i>09/01/2017 – 06/30/2021</i>
Honors Program: Mixed Class in Chu Kochen Honor College	

TECHNICAL SKILLS

Languages: Python, Bash.
ML/DL: PyTorch; reinforcement learning (RL); veRL; Ray; SGLang; vLLM; verifiable dataset curation, GNN.
Systems: Linux, Git, Docker.
Power System Simulation: Matpower, Pandapower.

RESEARCH EXPERIENCE

VLM-based GUI-Agent	09/2025 – Ongoing
• Building a vision–language–model-based agent that operates a computer from natural-language instructions and screenshots, using mouse and keyboard actions.	
• Collect agentic training data through parallel rollouts on virtual machines running in Docker.	
• Training a reward model to provide rich training signals and help credit assignment to help efficient Multi-turn GRPO-style RL training. Investigating a proper reward model design.	
General Vision–Language Reasoning	12/2024 – 05/2025
<i>AAAI 2026</i>	
• Built a visual reasoning dataset designed for RL training, spanning eight reasoning types (infographic, mathematical, spatial, cross-image, and more).	
• Developed an influence-function data filtering method to select high-quality cross-domain samples.	
• Fine-tuned VLMs using multi-round GRPO-style RL with a difficulty-based data curriculum to improve their visual reasoning capabilities.	
• Implemented the full evaluation framework and training data pipelines.	
Transformer-based Lyapunov Function Discovery	02/2024 – 03/2025
<i>International Conference on Machine Learning (ICML) 2025</i>	
• Built the first RL-driven framework that uses transformers to generate analytical Lyapunov functions for nonlinear dynamical systems, which is a long-standing open problem in mathematics.	
• Designed an optimization-based evaluation module to score candidate functions (rule-based rewards) and trained the model with risk-seeking RL, enabling efficient exploration and candidate evolution.	
• Discovered valid Lyapunov functions for systems up to 10 dimensions, including real-world power-system models where no analytical solutions were previously known.	
Stability-constrained Power System Control	09/2021 – present
<i>PSCC, IEEE TPS, IEEE TSG, IEEE TCNS, L-CSS</i>	
• Established stability guarantees for voltage and frequency regulation by showing that monotone neural policies satisfy Lyapunov-based stability conditions; designed architectures that enforce this property. Reinforcement Learning is used to improve transient control performance.	
• Developed algorithms that provide steady-state guarantees, including a safe gradient-flow method for voltage control and a Neural-PI controller for frequency regulation with fast response and input-to-state robustness.	
• Created online adaptation strategies for time-varying systems, using (i) a bandit-based selector among pretrained controllers, and (ii) online policy optimization that updates the neural controller from real-time data.	
• Developed a unified control framework for distribution grids that enables learning-based controllers to utilize arbitrary communication infrastructure while ensuring closed-loop stability via ICNN-based architectures.	

PUBLICATIONS

Conference Paper

- **Jie Feng**, Yuanyuan Shi, Deepjyoti Deka. *Efficient Policy Adaptation for Voltage Control Under Unknown Topology Changes*, *Power Systems Computation Conference (PSCC)*, 2026.
- Yuheng Zha, Kun Zhou, Yujia Wu, Yushu Wang, Zhi Xu, **Jie Feng**, Shibo Hao, Matthew Ho, Lianhui Qin, Zhengzhong Liu, Eric P. Xing, Zhiting Hu. *Vision-G1: Towards General Reasoning Vision-Language Models via Reinforcement Learning*, *The Association for the Advancement of Artificial Intelligence (AAAI)*, 2026.
- Yuxin Bian, **Jie Feng**, Yuanyuan Shi. *DiffOP: Reinforcement Learning of Optimization-Based Control Policies via Implicit Policy Gradients*, *The Association for the Advancement of Artificial Intelligence (AAAI)*, 2026.
- Haohan Zou*, **Jie Feng***, Hao Zhao, Yuanyuan Shi. *Analytical Lyapunov Function Discovery: An RL-based Generative Approach*, *International Conference on Machine Learning (ICML)*, 2025. Haohan is an undergrad I mentored.

Journal Papers

- Zhenyi Yuan, **Jie Feng**, Yuanyuan Shi, Jorge Cortes. *Stability Constrained Voltage Control in Distribution Grids with Arbitrary Communication Infrastructure*, *IEEE Transactions on Smart Grid (TSG)*, 2025.
- **Jie Feng**, Wenqi Cui, Jorge Cortes, Yuanyuan Shi. *Online Event-Triggered Switching for Frequency Control in Power Grids with Variable Inertia*, *IEEE Transactions on Power Systems (TPS)*, 2025.
- **Jie Feng**, Manasa Muralidharan, Rodrigo Henriquez-Auba, Patricia Hidalgo-Gonzalez, Yuanyuan Shi. *Stability-Constrained Learning for Frequency Regulation in Power Grids With Variable Inertia*, *IEEE Control Systems Letters (L-CSS)*, 2024.
- **Jie Feng**, Yuanyuan Shi, Guannan Qu, Steven H. Low, Anima Anandkumar, Adam Wierman. *Stability Constrained Reinforcement Learning for Real-Time Voltage Control in Distribution Systems*, *IEEE Transactions on Control of Network Systems (TCNS)*, 2023.
- **Jie Feng**, Wenqi Cui, Jorge Cortes, Yuanyuan Shi. *Bridging Transient and Steady-State Performance in Voltage Control: A Reinforcement Learning Approach with Safe Gradient Flow*, *IEEE Control Systems Letters*, 2023.
- Ziheng Duan, Haoyan Xu, Yida Huang, **Jie Feng**, Yueyang Wang. *Multivariate Time Series Forecasting with Transfer Entropy Graph*, *Tsinghua Science and Technology*, 2022
- Haoyan Xu, Ziheng Duan, Yueyang Wang, **Jie Feng**, Runjian Chen, Yida Huang. *Graph Partitioning and Graph Neural Network based Hierarchical Graph Matching for Graph Similarity Computation*, *Neurocomputing*, 2021

Workshop Paper

- **Jie Feng**, Haohan Zou, Yuanyuan Shi. *Combining Neural Networks and Symbolic Regression for Analytical Lyapunov Function Discovery*, *ICML Workshop: Foundations of Reinforcement Learning and Control – Connections and Perspectives*, 2024
- XiangJi Wu, Ziwen Zhang, **Jie Feng**, Lei Zhou, Junmin Wu, *End-to-end Optimized Video Compression with MV-Residual Prediction*, *CVPR Workshop*, 2020

PROFESSIONAL EXPERIENCE

Los Alamos National Lab

Los Alamos, NM, USA

Student Fellow, Advised by Dr. Deepjyoti Deka

06/17/2024 – 09/20/2024

- Designed online policy optimization to adapt pretrained neural policies to time-varying system conditions.

TuCodec AI Lab

Shanghai, China

Research Intern – Video Compression

01/01/2020 – 06/30/2020

- CVPR CLIC 2020: 1st place (P-frame) in learning based video compression competition. Built a deep learning based video codec with MV-residual prediction optimized for MS-SSIM.

SELECTED AWARDS

LFRP 2024 In-Residence National Laboratory Graduate Fellows (One of the seven awardees selected from all ten University of California campuses)	Dec 2023
Innovation Scholarship for Academic Advances (Chu Kochen College)	Nov 2020
First-class Scholarship for Academic Excellence (Top 3%)	Oct 2020
1st Place, CVPR, Challenge on Learned Image Compression 2020 (P-frame Track)	Jun 2020
Tanglixin Scholarship for Academic Excellence (30/24,878)	Nov 2018

ACADEMIC SERVICES

Reviewer L4DC 2026; Automatica, AAAI 2023–2024; IEEE TSG; IEEE TPS; IEEE TEMPR; IEEE T-ITS; IEEE CDC
Teaching Teaching Assistant, ECE 171B – Linear Control System Theory (Fall 2022–Fall 2025)